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Abstract: Breakdown of a slender longitudinal vortex caused by a normal shock is studied with

a numerical solution of the Euler and the Navier-Stokes equations for time-dependent, three-

dimensional, supersonic 
ow at a free stream Mach number of 1.6 and di�erent vortex strengths.

When breakdown occurs, a free stagnation point is formed downstream from the shock, followed by a

region of reversed 
ow with a bubble-like 
ow structure. The burst part of the vortex grows in the axial

and radial directions until the bubble reaches a stable position. The shock remains normal near the

axis of the vortex but is curved further away from it. The 
ow downstream from the shock is slightly

oscillating. The numerical results clearly reveal the time-dependent 
ow structure in the axial and the

radial direction. The results compare well with recent experimental �ndings.

1 Introduction

In continuation of previous studies [1, 2, 3, 4] the interaction of a longitudinal Burgers vortex with a
wake-like axial velocity pro�le and a normal shock is investigated for viscous supersonic 
ow at aMach

number of Ma=1.6. Such an interaction is encountered, for example, on strake-wing con�gurations at
moderate and high angles of attack and compressors operating near their stability limits [5], where
the tip vortex of the blades interacts with a normal shock during the passage through the compressor
cascade. Although the breakdown process is mainly dominated by pressure forces, the 
ow inside
the burst part of the vortex is also strongly in
uenced by viscous forces. A comparison of results of
previous computations for inviscid 
ows with those for viscous 
ows presented here clearly exhibits
that the vortex structures encountered in viscous 
ows inside the bubble are smaller, and that the
bubble itself is smaller in its radial and axial extent.

2 Governing equations, boundary conditions, and computa-

tional domain

The numerical solution used in the present analysis is based on the Euler and the Navier-Stokes
equations for time-dependent, three-dimensional, compressible 
ow. The convective terms are dis-
cretized with an explicit �nite-volume scheme based on the AUSM+ approach by Liou [6]. The
dissipative terms, including the Stokes stresses and the Fourier heat 
ux vector, are discretized
using an adapted cell-vertex scheme, and the time-derivatives are approximated via a 5-step Runge-
Kutta scheme. Details of the computational method are presented in [2]. The computational domain
is a rectangular box with 99x99x199 grid points in the x-y-, and z-direction (Fig. 1). Near the axis
of the vortex the grid is clustered so that the vortex core (r < 1) is resolved with approx. 21 grid
points in the radial direction. The in
ow and initial conditions are prescribed with a slender Burgers
vortex in dimensionless form

v'(r) =
�0 � r

2�
� e

1�r2

2 ; vz(r) = vz1 � (1� Æ � e��w�r
2

) ; vr(r) = 0 (1)
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In the above equation v'(r) is the circumferential, vz(r) the axial, and vr(r) the initial radial velocity
component. Figure 2 shows the vortex parameters as a function of the core radius at a free stream
Mach number ofMa1=1.6. The quantity �0 = ��

0
=(a�

0
�r�
0
) is the circulation of the vortex scaled with

the speed of sound at stagnation conditions, a�
0
and the radius of the vortex core r�

0
at r = r�=r�

0
=1.

The quantity Æ=0.1 determines a wake-like axial velocity pro�le, and r = �
p
1=(2�w) describes the

position of the point of in
ection for � = 1. The initial radial pressure distribution is obtained by
solving the radial momentum equation for slender vortices; the temperature is computed by assuming
constant stagnation enthalpy for the radial direction, and the equation of state yields the density. For
the subsonic part of the out
ow plane (Fig. 1, plane 6) a non-re
ecting boundary condition based
on the characteristic approach by Poinsot & Lele [7] for viscous 
ows is chosen. The shock is
prescribed by the Rankine-Hugoniot relations in the x-y plane at z=0. The remaining horizontal
and vertical boundaries of the computational domain (Fig. 1, plane 1 to 4) are represented by stream
surfaces, so that the kinematic 
ow condition holds. The computation was initialized by prescribing
the shock in the middle of the computational domain. The main 
ow is in the z-direction. Upstream
of the shock the slender vortex is embedded in the main 
ow whereas downstream a uniform 
ow is
speci�ed.

3 Results

It was shown in [2], that normal-shock vortex-interaction does not necessarily lead to vortex break-
down. In fact, when the vortex strengths, e.g. its circulation, is small, the vortex can pass the shock
without generally changing its shape. Two major statements could be made: First, by passing the
shock the axial velocity pro�le of the vortex, which was uniform upstream of the shock, becomes wake
like. The deceleration of 
ow has its maximum on the vortex axis. Second, the vortex circumferential
velocity component remained nearly unchanged when passing the shock. The �rst can be explained
by the pressure minimum on the vortex axis, the second �nding agrees with the shock relations. These
observations were also made by Delery [10] in his experiments.

Increase of the vortex strengths, say the circumferential velocity, or the shock strength through the
free stream Mach number, or the vortex de�cit of the axial 
ow the interaction with the normal
shock leads to vortex breakdown. This can be seen in Figure 3. The left column shows the Mach

number distribution and the right column shows the streamlines in the symmetry x-z-plane of the
computational domain for various vortex strengths of �0=3.5, 4.0, 4.5. The instantaneous pictures of
the Euler computations show that at vortex breakdown a free stagnation point on the vortex axis
is formed. The shock is curved forward and a bubble-like 
ow regime grows in the lateral and axial
directions until a nearly stable, slightly oscillating shock topology is reached. Inside the breakdown
bubble counter-clockwise rotating ring-like vortical structures are generated, so that the stagnation
point on the vortex axis is stabilized by the back
ow caused by the ring-like vortical structures
perpendicular to the vortex axis. By either increasing the vortex strength, the free stream Mach

number or the vortex de
ection parameter Æ the interaction of the comprehensive e�ects lead to
strong vortex breakdown.

Figure 4 shows the breakdown caused by the normal-shock vortex-interaction at Ma1=1.6, �0=5.0,
for a time level t=200 for inviscid (left column) and viscous 
ow computation (Re=15000, right
column). The upper pictures the three-dimensional vorticity distribution at strong vortex breakdown
can be seen. In these pictures the Mach number distribution of the x-z symmetry plane of the
computational domain is projected to the boundary surface of the computational domain. It can be
seen that the inviscid 
ow computation (left column) yields vortical structures larger than those of the
viscous computation. The Mach number and pressure contours con�rm a multiple shock structure
(Fig. 4 b). The deformed shock resembles that of a bow shock observed at supersonic 
ow around
blunt bodies. Further away from the axis the shock angle decreases until a shock-shock interaction
is encountered. The calculation for inviscid 
ow yields two adjacent counterclockwise rotating vortex
rings in the bubble. For the viscous computations multiple vortex structures can be observed inside
the bubble. An analysis of the time-development of the 
ow shows a periodic shedding of the vortex

2



rings. A detailed investigation of the 
ow pattern evidences that the two vortices are separated by a
shock which is caused by a supersonic jet like 
ow in the upstream direction along the axis (Figure 6).
This shock is perpendicular to the axis of symmetry. The streamlines in the recirculation zone show a
convergent-divergent nozzle-like 
ow structure that enables the 
ow to be supersonic again inside the
bubble. The acceleration to supersonic 
ow inside the bubble was already noticed by Erlebacher
et. al. in their numerical investigations [9].

In the lower part of Figure 4 the Mach number distribution in a plane perpendicular to the vortex
axis is shown. A fan like 
ow regime with multiple shock structures can be observed which also was
noticed by Brillant et. al. in their experiments [12].

Figure 5 shows a time sequence from t=r�
0
=a�

0
=60 to t=200. The instantaneous pictures in the

two columns left show the projections of the streamlines and the vortex lines dz=dx = !z=!x in the
horizontal center plane y=const. (see Fig. 1) of the domain of integration. The third column represents
a sequence of �2-surfaces, that to a certain extent can be identi�ed with surfaces of constant pressure
[8], and in color of the local density. In the fourth column the pressure, density, temperature, Mach

number Maz, and velocity w component in the z-direction along the axis of the vortex are shown.
The pictures clearly indicate that with increasing time a free stagnation point on or near the axis is
formed, followed by a bubble-like 
ow structure. The bubble grows in the lateral and axial directions
in time, until a stable, only slightly oscillating state is reached. Inside the bubble several small ring-like
vortex structures can be identi�ed, traveling downstream with progressing time. From the velocity
and Mach number distributions it can be seen that there is a strong axial reverse 
ow along the axis
of the vortex. The �2-surface representations con�rm the ring-like structures inside the bubble. For
increasing time the 
ow deviates more and more from its initial axial symmetry, con�rming that it can
be concluded that vortex breakdown is a truly three-dimensional process which cannot be described
using a formulation for axially symmetric 
ows.

The schlieren picture in Fig. 7, shows the bubble topology of the computation. In the parallel exper-
imental investigations the vortex is produced with a double wedge airfoil in a supersonic 
ow. When
vortex breakdown occurs, the shock is deformed upstream, and the characteristic length scale of the
arising bubble is of the order of the diameter of the core of the impinging vortex.

In addition to the numerical and experimental investigations, a breakdown criterion was derived for
uniform axial 
ow (Fig. 8). Based on the axial momentum equation for inviscid 
ow and the Rankine-
Hugoniot relations, the onset of breakdown can be predicted by requiring a stagnation point to be
formed on the axis. In reference [2] it is shown that a breakdown condition based on the momentum
equation along the vortex axis reads

p�
1AXIS

p�
11| {z }
I

+
��
1AXIS

� v2�z1AXIS
p�
11| {z }
II

�
p�
21

p�
11|{z}
III

: (2)

In the above equation, the pressure and momentum forces are written with respect to the free stream
pressure p�

11
. In the case of uniform axial 
ow, the second term (II) on the left side can be written

in the following form

��
1AXIS

� v2�z1AXIS
p�
11

= 
 �
��
1AXIS

��
11

�Ma2
11

: (3)

Since Croccos equation

Trs+ ~v � (r� ~v) =
@~v

@t
+rh0 (4)

yields T � rs = rh0 if the velocity and the vorticity vector are parallel to each other in steady 
ows
the radial momentum equation for slender vortices

@p�

@r�
=

��v2�'
r�

(5)
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can be solved for the velocity distribution given by equation (1). Together with the Rankine Hugoniot
relation for the pressure ratio across a normal shock (term III)

p�
2

p�
1

= 1 +
2 � 



 + 1
(Ma2

1
� 1) ; (6)

the axial momentum equation (2) leads to the following breakdown criterion

(1�
(
 � 1) � �2

0 � e
1

16�2[2 + (
 � 1)Ma2
1
]�1

)




�1

| {z }

p�
1AXIS

=p�
11

+

Ma211

(1�
(
�1)�2

0
�e1

16�2 [2+(
�1)Ma2
1

]�1
)
�1

�1

| {z }

��
1AXIS

=��
11

� 1 +
2



 + 1
(Ma

2
1
� 1)

| {z }

p�21
=p�11

: (7)

From the above equation the circulation �0 for which breakdown occurs can be determined. The
corresponding spiral angle � is de�ned by the quotient of the circumferential and the axial velocity

� =
v�'(r

� = r�
0
)

v�z(r
� = r�

0
)
=

�0 �
q
1 + 
�1

2
Ma2

1

2 � � �Ma1 � (1� Æ � e��w)
(8)

as a function of the free stream Mach number Ma1. The comparison of the results obtained using
the above relation with theoretical, numerical and experimental data [9, 10, 11] shows good agreement
in the range of 1:5 �Ma1 � 2:0 (Fig. 9).

4 Concluding Remarks

Breakdown of longitudinal slender vortices in supersonic 
ow, caused by the interaction with a normal
shock, was investigated using a numerical solutions of the Euler andNavier-Stokes equations. The
investigation of the normal shock-vortex interaction yields two types of 
ow �elds downstream from
the shock. Depending on the in
ow parameters a weak interaction with no vortex breakdown was
observed, and a strong interaction with a bubble-like vortex breakdown. The calculations show, that
a slender vortex propagating across a normal shock does not necessarily leads to breakdown. If the
circulation of the vortex is small and if the axial velocity pro�le is uniform, the vortex does not change
its overall shape. By increasing the vortex strengths, the free stream Mach number or the vortex
de
ect of the axial 
ow the shock vortex interaction leads to a free stagnation point on or nearby the
vortex axis, which can be understood as the initialization of vortex breakdown. The results obtained
indicate, that the 
ow structure of the burst part of the vortex as simulated with the numerical solution
agrees well with experimental observations. Several ring-like, slightly oscillating vortex structures are
formed immediately downstream from a stagnation point on the axis. For certain 
ow conditions
strong upstream 
ow motion, even supersonic 
ow may occur near the axis. A breakdown criterion
was derived that showed good agreement with numerical and experimental �ndings.
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Figure 1: Computational setup and boundary conditions for normal shock-vortex interaction. Flow
is in the positive z-direction.
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ow (time step
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x-z-middle plane of the bubble, and c) Mach number distribution within the bubble at the x-y-plane
for z = 0.
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Figure 5: Evolution in time of streamlines (1st column), and vorticity contours (2nd column) in the
center plane y = 0; �2-iso surface (3d column); distribution of the primitive variables and the Mach

number on the centerline (4th column from left to right) for certain time steps for normal shock-vortex
interaction (Ma1 = 1:6, �0 = 2:5, Æ = 0:1).
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(SYA) 18-11

Paper: 18
Author: Mr. Thomer

Question by Mr. Jeune :  Concerning the vortex breakdown. limit presented as a function of Mach
number for normal shock case, should it be possible to correlate this limit for both normal and
oblique shocks by considering the pressure jump across the shock?

Answer:  No, unfortunately not.  In case of normal shocks the flow downstream of the pressure
jump is subsonic.  This is a “must” for the decelerated flow on the vortex axis in order to obtain
a free stagnation point.  In case of an oblique shock, not only must the pressure jump across the
shock be a criterion, but also the “strong” shock solution must be obtained locally in the vicinity
of the vortex core.  Therefore, locally at vortex axis, a small subsonic pocket has to be formed
in which the flow is decelerated so that a stagnation point becomes possible.  By taking a look
on the local Mach numbers, the water parameters δ can be varied to reduce the Maxis such that
Maxis << Moo.  The flow on the vortex axis is not able anymore to follow the redirection (given
by the ramp angle) so that locally a normal shock is formed.  If now, as a second criterion, the
pressure jump across this locally normal shock is sufficient, the vortex will break down.

For further information about that, please take a look at my ECCOMAS paper 2000, listed in the
references.
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